

NEXCOM
 MiniPCIe NISK-NVRAM

Library User Manual

Manual Rev.: V0.4

Revision Date: Feb. 03rd, 2015

Revise note:

Ver Description
V0.1 2015/01/27:
V0.2 2015/01/30:
V0.3 2015/02/02:
V0.4 2015/02/03:

Contents
NEXCOM ... 1

Revise note: .. 2

1. NISK-NVRAM Library Overview .. 5

1.1. Introduction ... 5

1.2. Operation system ... 6

1.3. Principles of Programming .. 7

2. API Reference .. 8

2.1. API Overview .. 8

2.2. Functions for Initialization .. 10

2.2.1. NSK_DeviceInit ... 10

2.2.2. NSK_DeviceClose .. 11

2.3. Device Information Functions ... 12

2.3.1. NSK_GetDeviceRamSize ... 12

2.3.2. NSK_GetDeviceCount ... 13

2.3.3. NSK_GetGetDeviceInfo ... 14

2.4. Read/Write Functions ... 16

2.4.1. NSK_WriteDataToRam ... 16

2.4.2. NSK_ReadDataFromRam .. 18

2.5. Save/Load Functions... 20

2.5.1. NSK_SaveDeviceDataToFile .. 20

2.5.2. NSK_LoadFileToDeviceData .. 21

2.6. Device Version Functions .. 22

2.6.1. NSK_GetFirmwareVersion .. 22

2.6.2. NSK_GetHardwareVersion .. 23

2.6.3. NSK_GetDriverVersion ... 24

2.6.4. NSK_GetDriverVersion ... 25

2.7. Error Codes .. 26

3. Programming example .. 27

3.1. Visual Studio programming example .. 27

3.1.1. How to use the NiskNVRAM Library .. 27

3.1.2. Programming example ... 30

1. NISK-NVRAM Library Overview

1.1. Introduction
NISK-NVRAM Library is a programming interface for controlling Mini PCIe
NISK-NVRAM devices.
Following figure shows the system architecture of NISK-NVRAM:

NISK-NVRAM system architecture

Sample programs for NISK-NVRAM please refer to Chapter.3 as a programming
reference.

NISK-NVRAM Library (APIs)
(NiskNvram.dll)

Programming languages:
 C/C++
 Visual basic
 VB. NET
 C#

Utility / Tools:
 Nex-RW.exe

Sample programs:
 Visual studio 2010

Microsoft Windows OS NiskNvram Device driver

Win32 user layer

PC / IPC platform

Win32 kernel layer

1.2. Operation system

NISK-NVRAM library (NiskNVRAM.dll and device driver) supports following operating
system:
Microsoft® Windows® 7 (32 bit)

1.3. Principles of Programming

The basic NISK-NVRAM library programming flow chart is as following figure.

1. Before using the Nisk NVRAM functions, please execute the initial function
NSK_DeviceInit() first.

2. After finishing programming, please execute the close function NSK_DeviceClose()

to close the devices.
3. This library (device driver) supports up to 16 NISK-NVRAM devices in one

machine.
4. The maximum size of NVRAM memory on the device is 1 Mbytes(1048576 bytes).

NSK_DeviceInit()

NSK_DeviceClose()

End of program

Start of program

NSK_WriteDataToRam()

NSK_ReadDataFromRam()

(…other NSK APIs)

2. API Reference

2.1. API Overview

All APIs of NiskNVRAM Library are listed. The definition of API is located at the
header file “NiskNVRAM.h”.

Function Name Description

Initialization Functions

NSK_DeviceInit Nisk NVRAM initial function

NSK_DeviceClose Nisk NVRAM close function

Device Information Functions

NSK_GetDeviceRamSize Get the total size of Nisk NVRAM

NSK_GetDeviceCount Get how many devices of Nisk NVRAM

NSK_GetDeviceInfo Get Nisk NVRAM Bus/Device/Function number

Read/Write Functions

NSK_WriteDataToRam Copy data from user data to Nisk NVRAM

NSK_ReadDataFromRam Copy data from Nisk NVRAM to user data

Save/Load Functions

NSK_SaveDeviceDataToFile Save the data of device to file

NSK_LoadFileToDeviceData Load the data from file to device

Device Version Functions

NSK_GetFirmwareVersion Get Nisk NVRAM Firmware Version

NSK_GetHardwareVersion Get Nisk NVRAM Hardware Version

NSK_GetDriverVersion Get Nisk NVRAM Driver Version

NSK_GetLibraryVersion Get Nisk NVRAM dll Version

The C/C++ data types for API is defined in “nex_type.h” and listed as follows:

Type C/C++ Primitive format Byte
Length

Value Range

BOOL_T Int Boolean 4 0:False, 1:True
U8_T unsigned char Unsigned Integer 1 0 ~ 255
U16_T unsigned short Unsigned Integer 2 0 ~ 65535
U32_T unsigned int Unsigned Integer 4 0 ~ 4294967295
U64_T unsigned __int64 Unsigned Integer 8 0 ~

18446744073709551615
I8_T char Signed Integer 1 -128 ~ 127
I16_T short Signed Integer 2 -32768 ~ 32767
I32_T int Signed Integer 4 -2147483648 ~

2147483647
I64_T __int64 Signed Integer 8 -9223372036854775808 ~

9223372036854775807
F32_T float Floating-point

number
4 IEEE-754, accurate to the

seventh decimal place
F64_T double Double-precision

floating-point
number

8 IEEE-754, accurate to the
fifteenth decimal place

RTN_ERR int Error code 4 -2147483648 ~
2147483647

2.2. Functions for Initialization
2.2.1. NSK_DeviceInit

 Nisk NVRAM initial function

C/C++ Syntax:
 RTN_ERR NSK_DeviceInit();

Parameters:
 <no Parameters>

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for initializing the library of NISK-NVRAM.
Attention! The function has to be the first executed function before executing all
other functions of NISK-NVRAM library.

Reference:
 NSK_DeviceClose();

2.2.2. NSK_DeviceClose

Nisk NVRAM close function

C/C++ Syntax:
 RTN_ERR NSK_DeviceClose();

Parameters:
 <no Parameters>

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for closing the library of NISK-NVRAM. Typically, this API is
execute at the end of application to release the system resources which allocated by
NISK-NVRAM library.

Attention! The function has to be the last executed function after executing all other
functions of NISK-NVRAM library.

Reference:
 NSK_DeviceInit();

2.3. Device Information Functions
2.3.1. NSK_GetDeviceRamSize

 Get the total size of Nisk NVRAM

C/C++ Syntax:
 RTN_ERR NSK_GetDeviceRamSize(U32_T *size);

Parameters:

U32_T *Size: Size is a pointer of U32_T. After executing this function, the total
size of the device of Nisk NVRAM would be updated in this parameter.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for getting the total size of the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

Reference:
 NSK_DeviceInit();

2.3.2. NSK_GetDeviceCount

 Get how many devices of Nisk NVRAM on a machine

C/C++ Syntax:
 RTN_ERR NSK_GetDeviceCount(U32_T *count);

Parameters:

U32_T *count: count is a pointer of U32_T. After executing this function,
the total count of the device of Nisk NVRAM would be updated in this
parameter.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for getting the total count of the device of Nisk NVRAM on
a machine.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

Reference:
 NSK_DeviceInit();

2.3.3. NSK_GetGetDeviceInfo

 Get Bus/Device/Function number of Nisk NVRAM

C/C++ Syntax:
 RTN_ERR NSK_GetDeviceInfo(U32_T Device_Id, DEVICE_INFO_T *pInfo);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15

DEVICE_INFO_T *pInfo : pInfo is a pointer of struct DEVICE_INFO_T. Depending

on the first input parameter “ DeviceId”, after executing this function,
Bus number, Device number and function number of the device of
Nisk NVRAM would be updated in this parameter.

typedef struct
{
 U8_T DeviceID; // Return ID of the device
 U8_T DeviceBusNum; // Return (PCI) bus number
 U8_T DeviceDevNum; // Return (PCI) dev number
 U8_T DeviceFuncNum; // Return (PCI) function

number
}DEVICE_INFO_T;

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for getting the driver version of the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.
Reference:
 NSK_DeviceInit();

2.4. Read/Write Functions
2.4.1. NSK_WriteDataToRam

 Copy data from user data to Nisk NVRAM

C/C++ Syntax:
 RTN_ERR NSK_WriteDataToRam(U32_T DeviceId, U32_T Offset, U32_T
ByteOfLength, U8_T *Data);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15

U32_T Offset: Offset from start address of NVRAM memory. The unit is byte.
 The range of “Offset” is 0 ~ (MAX_NVRAM_SIZE - 1),

MAX_NVRAM_SIZE is 1048576.

U32_T ByteOfLength: ByteOfLength is the length from the offset of the start

address that has to be written from user data to the device of Nisk
NVRAM. The unit is byte.

 The range of “ByteOfLength” is 1 ~ MAX_NVRAM_SIZE,
MAX_NVRAM_SIZE is 1048576.

Attention! ByteOfLength has to be equal or smaller than the residual size, the
residual size is (MAX_NVRAM_SIZE - Offset).

U8_T *Data: Data is a pointer of U8_T, which pointed to the start address of

the user data.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for copying data from user data to the device of Nisk
NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

Reference:
 NSK_DeviceInit();NSK_ReadDataFromRam()

2.4.2. NSK_ReadDataFromRam

 Copy data from Nisk NVRAM to user data

C/C++ Syntax:
 RTN_ERR NSK_ReadDataFromRam(U32_T DeviceId, U32_T Offset, U32_T
ByteOfLength, U8_T *Data);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15

U32_T Offset: Offset from start address of NVRAM memory. The unit is byte.
 The range of “ByteOfLength” is 1 ~ MAX_NVRAM_SIZE,

MAX_NVRAM_SIZE is 1048576.

U32_T ByteOfLength: ByteOfLength is the length from the offset of the start

address that has to be read from the device of Nisk NVRAM to user
data. The unit is byte.

 The range of “ByteOfLength” is 1 ~ MAX_NVRAM_SIZE,
MAX_NVRAM_SIZE is 1048576.

Attention! ByteOfLength has to be equal or smaller than the residual size, the
residual size is (MAX_NVRAM_SIZE - Offset).

U8_T *Data: Data is a pointer of U8_T, which pointed to the start address of
the user data.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for copying data from the device of Nisk NVRAM to user
data.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

2.5. Save/Load Functions
2.5.1. NSK_SaveDeviceDataToFile

 Save the data of device to file

C/C++ Syntax:
 RTN_ERR FNTYPE NSK_SaveDeviceDataToFile(U32_T DeviceId, I8_T* save_file);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15

I8_T* save_file: save_file is a pointer of I8_T, pointed to a string which is the

directory of the file has to be saved. Note that the filename extension
has to be “.nrw”. Ex. "C:\\test_data.nrw"

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Reference:
 NSK_LoadFileToDeviceData();

Usage:
 This function is used for saving data (data byte 0 ~1048575) from the device of
Nisk NVRAM to a file(.nrw).
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

2.5.2. NSK_LoadFileToDeviceData

 Load the data from file to device

C/C++ Syntax:
 RTN_ERR FNTYPE NSK_LoadFileToDeviceData(U32_T DeviceId, I8_T* load_file);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15

I8_T* load_file: load_file is a pointer of I8_T, pointed to a string which is the

directory of the file has to be loaded. Note that the filename extension
has to be “.nrw”. Ex. "C:\\test_data.nrw"

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Reference:
 NSK_SaveDeviceDataToFile();

Usage:
 This function is used for loading data (data byte 0 ~1048575) from a file(.nrw) to
the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

2.6. Device Version Functions
2.6.1. NSK_GetFirmwareVersion

 Get Nisk NVRAM Firmware Version

C/C++ Syntax:
 RTN_ERR NSK_GetFirmwareVersion(U32_T DeviceId, U32_T *version);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15.

U32_T *Version : Version is a pointer of U32_T. After executing this function, the

firmware version of the device of Nisk NVRAM would be updated in
this parameter.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for getting the firmware version of the device of Nisk
NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

Reference:
 NSK_DeviceInit();
 NSK_GetHardwareVersion();
 NSK_GetDriverVersion();
 NSK_GetLibraryVersion();

2.6.2. NSK_GetHardwareVersion

 Get Nisk NVRAM Hardware Version

C/C++ Syntax:
 RTN_ERR NSK_GetHardwareVersion(U32_T DeviceId, U32_T *version);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15.

U32_T *Version : Version is a pointer of U32_T. After executing this function, the

hardware version of the device of Nisk NVRAM would be updated in
this parameter.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for getting the hardware version of the device of Nisk
NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

Reference:
 NSK_DeviceInit();
 NSK_GetFirmwareVersion();
 NSK_GetDriverVersion();
 NSK_GetLibraryVersion();

2.6.3. NSK_GetDriverVersion

 Get Nisk NVRAM Driver Version

C/C++ Syntax:
 RTN_ERR NSK_GetDriverVersion(U32_T DeviceId, U32_T *version);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15.

U32_T *Version : Version is a pointer of U32_T. After executing this function, the

driver version of the device of Nisk NVRAM would be updated in this
parameter.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for getting the driver version of the device of Nisk NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.

Reference:
 NSK_DeviceInit();
 NSK_GetFirmwareVersion();
 NSK_GetHardwareVersion();
 NSK_GetLibraryVersion();

2.6.4. NSK_GetDriverVersion

 Get Nisk NVRAM Library Version

C/C++ Syntax:
 RTN_ERR NSK_GetLibraryVersion(U32_T DeviceId, U32_T *version);

Parameters:

U32_T DeviceId : DeviceID is the ID of the device of Nisk NVRAM that determines
which device of Nisk NVRAM you want to control. DeviceId starts from
0, and depends on the count of the devices of Nisk NVRAM. For
example, if there is only one device of Nisk NVRAM on a machine,
DeviceID would be 0. If there are two device of Nisk NVRAM on this
machine, DeviceID might be 0 or 1.

 The range of “DeviceId” is 0 ~ 15

U32_T *Version : Version is a pointer of U32_T. After executing this function, the

Library(dll) version of the device of Nisk NVRAM would be updated in
this parameter.

Returned Values:
 Error Code is returned.
“RETURN_SUCCESS” (0) is returned if function call is successful, while “Error Code”
is returned when failed. The Error code is defined as “ERROR_XXXX” (non-zero) in
header file “NiskNVRAM.h”.

Usage:
 This function is used for getting the Library(dll) version of the device of Nisk
NVRAM.
Attention! The function could only be executed after calling the NSK_DeviceInit
function.
Reference:
 NSK_DeviceInit();
 NSK_GetFirmwareVersion();
 NSK_GetHardwareVersion();
 NSK_GetDriverVersion();

2.7. Error Codes

Symbol Code Description

RETURN_SUCCESS 0 Function call successfully

ERROR_READ_OFFSET_SIZE 0xFFFFFFF0 Read size illegal

ERROR_WRITE_OFFSET_SIZE 0xFFFFFFF1 Write size illegal

ERROR_NO_INITIAL 0xFFFFFFF2 No initial function called before

ERROR_INVALID_HANDLE_VALUE 0xFFFFFFF3 Invalid handle value

ERROR_INITIAL_MORE_THAN_ONETIME 0xFFFFFFF4 Initial function called more than

one time

ERROR_INITIAL_INTERNAL_ERR 0xFFFFFFF5 Initial internal error

ERROR_NO_THIS_DEVICE 0xFFFFFFF6 Invalid Device id

ERROR_FILE_OPEN 0xFFFFFFF7 Error of file opening of save or load

file

ERROR_INPUT_FILENAME_EXTENSION 0xFFFFFFF8 Invalid filename extension of save

or load file

3. Programming example

3.1. Visual Studio programming example
3.1.1. How to use the NiskNVRAM Library

The following steps show that how to use the NiskNVRAM library in the project of Mircosoft

Visual Studio 2010 for this example:

1.Click the properties of the project of nvram_sample.

2. Select the C/C++ category of properties, and pick the general option under that. In
the Additional Include Directories property, add the directory of the header files
which we want to include in this project. In picture below, we add the relative
directory “..\lib” for Additional Include Directories in this example.

3. Select the Linker category of properties ,and pick the General option under that. In
the Additional Library Directories property, add the directory of the library files
which we want to use in this project. In picture below, we add the relative directory
“..\lib” for Additional Library Directories in this example.

4. Select the Linker category of properties and, pick the Input option under that. In
the Additional Dependencies property, add the library file, such as NiskNVRAM.lib
for Additional Dependencies property in this example.

3.1.2. Programming example

The following example is created by Microsoft Visual Studio 2010, You can find this
sample in installation folder (\Samples\VC2010\)

This is a simple example to show that how to use the NiskNVRAM library for the
device of Nisk NVRAM by following instructions:

1.Initialization
 Call initialization function and get the returned status.

2.Get the count of device
 Check that there is no error code returned after initialization.
 (a)If there is no error code returned after initialization.
 - Get the count of device.
 - Get ram size of device.
 (b)If there is an error code returned after initialization.
 - Print the error code returned.
 - Close the program.

3.According to the count of device, get and print the information and version of
device(s).

4.Write data test
 Enter the offset address for data writing, writing data from 0 to 15 to the device
of DeviceId #0, the length of writing data is 16.

5.Read data test
 Enter the offset address for data reading, reading data from the device of
DeviceId #0, the length of reading data is 16. Finally, print the read data.

6.Save data test
 Test for saving data from device to file.

7.Save data test
 Test for loading data from file to device.

8.Close device
 After finishing the programming of device, call the close function to close the
device.

#include <stdio.h>

#include <stdlib.h>

#include "NiskNVRAM.h"

void main (void)

{

 U32_T status = 0;

 U32_T count = 0;

 U32_T i = 0;

 U32_T size = 0;

 U32_T driver_version[MAX_NVRAM_DEVICE_NUMBER];

 U32_T firmware_version[MAX_NVRAM_DEVICE_NUMBER];

 U32_T hardware_version[MAX_NVRAM_DEVICE_NUMBER];

 U32_T library_version[MAX_NVRAM_DEVICE_NUMBER];

 DEVICE_INFO_T dev_info[MAX_NVRAM_DEVICE_NUMBER];

 U8_T write_data[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};

 U32_T write_length = 0;

 U32_T write_offset = 0;

 U32_T write_status = 0;

 U8_T read_data[16] = {0};

 U32_T read_length = 0;

 U32_T read_offset = 0;

 U32_T read_status = 0;

 I8_T* save_file = "C:\\test_data.nrw";

 I8_T* load_file = "C:\\test_data.nrw";

 /*Instruction #1*/

 // Nisk NVRAM initial

 status = NSK_DeviceInit();

 /*Instruction #2*/

 //get device(s) count

 if(status == RETURN_SUCCESS)

 {

 //confirm there is no error after initialization

 //get device of Nisk NVRAM count

 status = NSK_GetDeviceCount(&count);

 printf("This machine has installed %d device(s) of Nisk NVRAM\n",count);

 status = NSK_GetDeviceRamSize(&size);

 printf("size of Nisk NVRAM is %d bytes\n", size);

 }

 else//Initial fail

 {

 //print error code of initialization

 printf("Error code : %x\n", status);

 system("pause");

 }

 /*Instruction #3*/

 //get device(s) information

 for(i = 0; i < count; i++)

 {

 //depending on the device count we got

 //get the information of device(s)

 status = NSK_GetDeviceInfo(i, &dev_info[i]);

 printf("Device information:\n");

 printf(" Device Id: %d\n", dev_info[i].DeviceID);

 printf(" Bus Number: %d\n", dev_info[i].DeviceBusNum);

 printf(" Device Number: %d\n", dev_info[i].DeviceDevNum);

 printf(" Function Number: %d\n", dev_info[i].DeviceFuncNum);

 //depending on the device count we got

 //get the driver version of device(s)

 //get the firmware version of device(s)

 //get the hardware version of device(s)

 //get the library version of devices(s)

 status = NSK_GetDriverVersion(i, &driver_version[i]);

 status = NSK_GetFirmwareVersion(i, &firmware_version[i]);

 status = NSK_GetHardwareVersion(i, &hardware_version[i]);

 status = NSK_GetLibraryVersion(i, &library_version[i]);

 printf(" Driver version: %x\n", driver_version[i]);

 printf(" Firmware version: %x\n", firmware_version[i]);

 printf(" Hardware version: %x\n", hardware_version[i]);

 printf(" Library vesrion: %d\n", library_version[i]);

 }

 /*Instruction #4*/

 //write data from 0 to 15 to deviceid 0 for testing

 printf("\n<Write and read testing for device 0>\n");

 printf("enter the offset for data write:\n");

 scanf_s("%d", &write_offset);

 write_status = NSK_WriteDataToRam(0, write_offset, 16, &write_data[0]);

 if (write_status == RETURN_SUCCESS)

 {

 printf("Write data success!!\n");

 }

 else

 {

 printf("NSK_WriteDataToRam Error code: %x\n", write_status);

 }

 /*Instruction #5*/

 //read data from deviceid 0 from write_offset for testing

 printf("enter the offset for data read:\n");

 scanf_s("%d", &read_offset);

 read_status = NSK_ReadDataFromRam(0, read_offset, 16, &read_data[0]);

 if (read_status == RETURN_SUCCESS)

 {

 printf("Read data success!!\n");

 }

 else

 {

 printf("NSK_WriteDataToRam Error code: %x\n", write_status);

 }

 if (!read_status)

 {

 //print the read data

 for (i = 0; i < 16; i++)

 {

 printf("read #%d byte : %d\n", i, read_data[i]);

 }

 }

 /*Instruction #6*/

 //test for saving data from device to file("C:\\test_data.nrw")

 status = NSK_SaveDeviceDataToFile(0, save_file);

 printf("Save data from device to file finish!!\n");

 /*Instruction #7*/

 //test for loading data from file("C:\\test_data.nrw") to device

 status = NSK_LoadFileToDeviceData(0, load_file);

 printf("Load data from file to device finish!!\n");

 /*Instruction #8*/

 // Nisk NVRAM close

 NSK_DeviceClose();

 system("pause");

}

